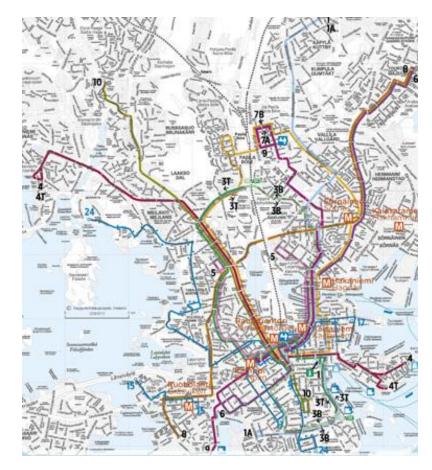
DESIGNED FOR DEMANDING CONDITIONS HELSINKI'S NEW TRAM

Ollipekka Heikkilä, Head of Development, Helsinki City Transport


Co-Authors

Jouni Tyni, Manager Sales & Marketing, Transtech
Thomas Mosbacher, Project Manager, Voith

HELSINKI TRAM SYSTEM

- 57.000.000 passengers / year
- 5,5.000.000 route kilometers / year
- 11 tram lines
- 118 km of tracks
- 132 trams in fleet
- 99,23% departures driven in schedule
- 350 drivers
- 620 staff in total
- 3 depots

HELSINKI TRAM FLEET

30 articulated vehicles END OF LIFE CYCLE

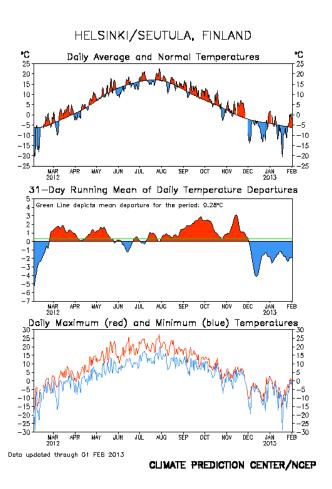
- manufactured: 1973–75
- 39 seats, 106 standees (4 prs/sqm)
- low-floor section: n/a
- manufacturer: Valmet (Düwag)

- manufactured: 1973–87/2006-14
- 49 seats, 120 standees (4 prs/sqm)
- low-floor section: 20 %
- manufacturer: Valmet/HTC (Düwag)

- manufactured: 1998-2002
- 45 seats, 80 standees (4 prs/sqm)
- low-floor section: 100 %
- manufacturer: Transtech (Bombardier)



- to be manufactured: 2012-2018
- 74 seats, 100 standees (4 prs/sqm)
- low-floor section: 100 % (elevated seats)
- manufacturer: Transtech (VOITH)



HELSINKI WEATHER CONDITIONS

HKL CONCEPT STUDY BASIC REQUIREMENTS

Excellent passenger comfort

- High passenger capacity
- High number of seats
- Maximum length 28 m
- Maximum width 2.3 m / 2.4 m
- 100 % low-floor
- Air conditioned passenger compartment (incl. floor heating)

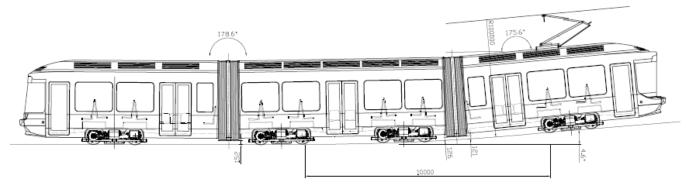
Optimized LCC

- High reliability
- High availability
- Good maintainability

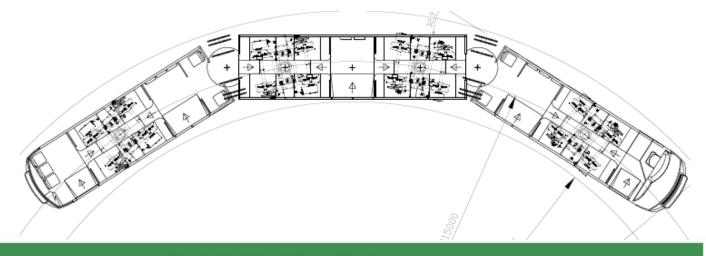
HKL CONCEPT STUDY SIMPLE SOLUTIONS

Low LCC through:

- Robust construction
- Flexible articulations
- Conventional pivoting bogies
- Traditional wheel sets with axles
- Quick wheel set exchange
- Fast exchange of interior and exterior panels; quick repair of accident- or vandalism damage


Excellent passenger comfort through:

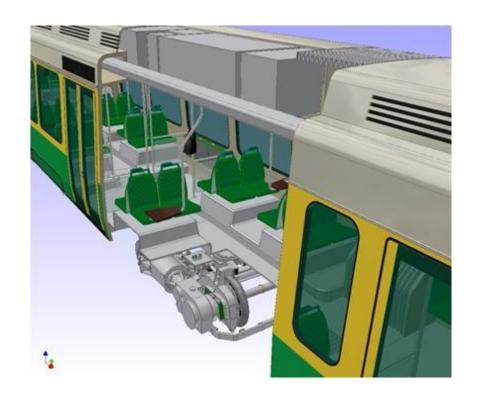
- Super silent wheels
- Extended spring ways
- Doubled gangway bellows
- Elevated seat arrangement for improved efficiency and passenger safety
- Low horizontal accelerations for passengers and driver
- Carbodies separated from bogie movements



HKL CONCEPT STUDY REAL BOGIES AND LOW-FLOOR

Freely twisting carbodies

Fully pivoting bogies in 15m curve



HKL CONCEPT STUDY CONVENTIONAL BOGIES

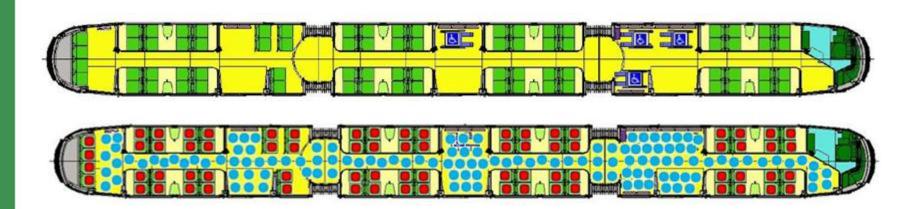
Conventional bogies

- Low-floor aisle over bogies
- Freely pivoting (decoupled)
- Rigid axles
- Low unsuspended mass
- Low axle mass
- Low rail- and wheel wear

HKL CONCEPT STUDY LOW-FLOOR

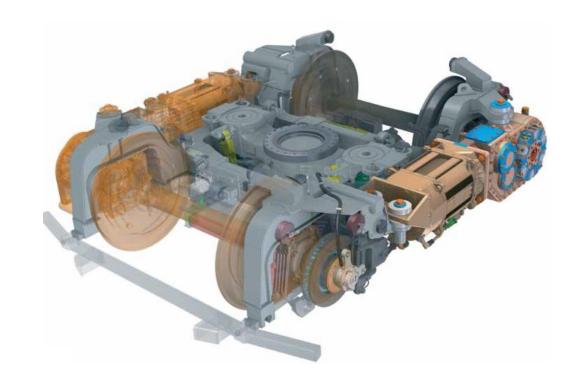
Low-floor through the vehicle

- Easy entrance for reduced mobility
- Raised floor under the seats for convenient seating above car traffic and standing passengers
- Ramps on the floor near the doors and over the bogie



TRANSTECH (ARTIC CAPACITY

High passenger capacity


- 74 (+14) seats
- 125 standees (5 persons / m2)
- 199 passengers
- Good passenger flow (5 doors)
- · Wheel chairs and prams near driver

TRANSTECH (ARTIC FLEXIBLE AND ROBUST BOGIE

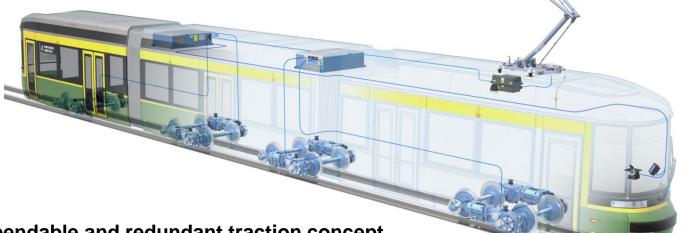
- Pivoting bogies
- Low axle mass (4 bogies)
- Helical secondary springs
- Rigid axles
- Short wheelbase (1700mm)
- Shear rubber wheel springs
- Self ventilated motors
- Quick wheelset exchange
- Large wheel diameter

TRANSTECH (7/737/C) LOW FLOOR WITH LOW-LCC

Low-floor with low LCC:

- Quick wheel set exchange
- High tire-km expectancy
- Very fast exterior- and interior panel exchange
- Fast window exchange
- No bulb exchange (LEDs)
- No floor ageing (composite)
- Innovative heat storage system
- Un-interrupted service through excellent redundancy concept





TRANSTECH (ACTION SYSTEM

Redundant, conventional control system

Basic control system functions are hard wired.

Dependable and redundant traction concept

- 4 independent traction chains (2 double inverter)
- Unrestricted passenger operation at 75% traction active
- Low towing demand, restricted operation at 50% traction active

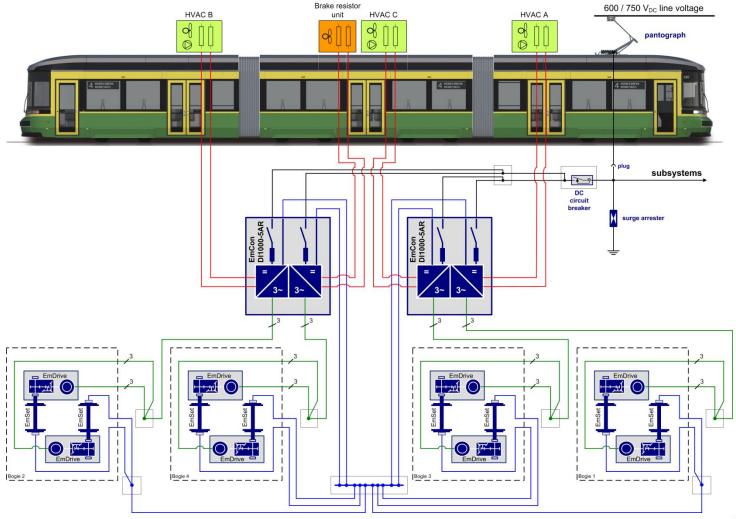
TRANSTECH ARTIC Energy-efficient electric drive

Low LCC

- Priority controlled brake energy management:
 - I. Heating (selective for each HVAC)
 - II. Recuperation
 - III. Storage (at HVAC system)
- High dynamic slip and slide control:
 - Common control for electrical and mechanical brakes
 - Bogie selective weight compensation

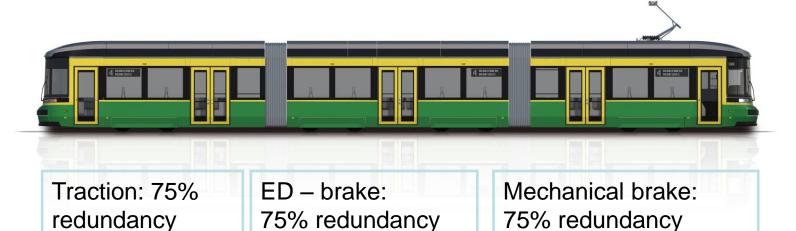
High passenger comfort

Speed limitation in curve sections


High reliability / maintainability

- Detailed failure and origin detection
- Driver and workshop optimized diagnostics levels
- Equipment engineered and tested for optimized reliability and modular exchange concept

TRANSTECH (RICC) TRACTION CONCEPT



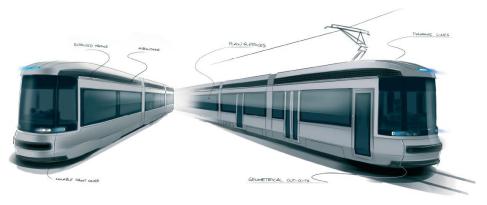
TRANSTECH (ARTIC Redundancy concept

Auxiliary power unit: Full redundancy

Battery charger: Full redundancy

Heating: Full redundancy

75 % = no reduction in performance



TRANSTECH ARTIC

Scandinavian design

TRANSTECH (7/37/C) Delivery schedule for HKL

- Signing of the contract 24.3.2011
- Delivery of pre-series trams (2) to
 Helsinki in June July 2013
- Commissioning and tests runs in Helsinki in June – November 2013
- Serial deliveries (trams 3 40) to
 Helsinki in 2016 2018
- Possible delivery of 20 + 30 + 40
 optional trams in 2018 2026
- Several interested cities in EU

Thank you for your attention!

Ollipekka Heikkilä, Head of Development, HKL

