

R. Heyder, K. Mädler, D. Ullrich, A. Zoll

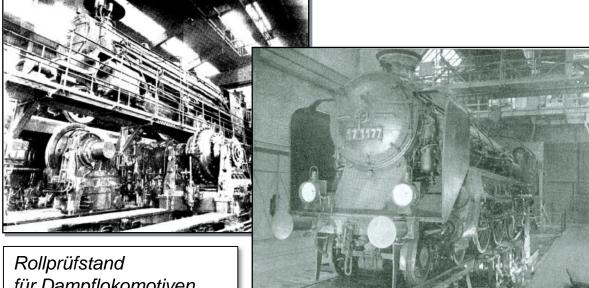
1:1-Rad/Schiene-Prüfstände und ihre Anwendungen in der Bahntechnik

DB Systemtechnik GmbH Minden/Kirchmöser (D)

Dr.rer.nat. Detley Ullrich

Werkstoff- und Fügetechnik

Graz, 08. September 2014


os: siehe Ref. [11 [21 [3]

Rückblick:

Mobility Networks Logistics

Historische Rollprüfstände der Bahntechnik

1900 1940 1980

für Dampflokomotiven
Swindon Works (UK),
um 1904

Roll

Rollprüfstand für Dampflokomotiven Deutsche Reichbahn Berlin, um 1940

Vierachsiger Rollprüfstand der Deutschen Bundesbahn München, 1978-2003

Fotos: Kuehn (2), Geburtig, Ullrich DBST, Egelkraut DB

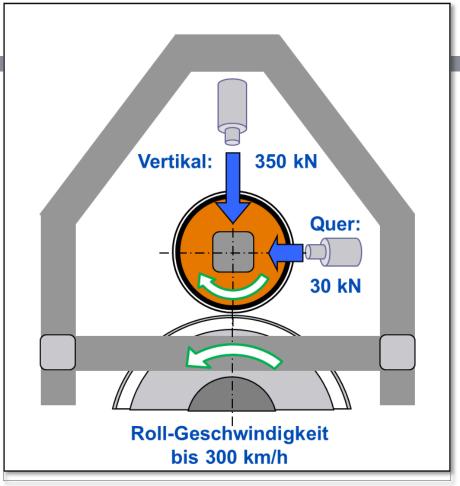
Rückblick und Gegenwart:

1950 1970 1990 2010

Rad/Schiene-Systemprüfstand (Prüfstand A) DB, Kirchmöser, 1999

Linearprüfstand

(Prüfstand B) DR, Kirchmöser, 1956 Rollprüfstand für Radsätze (Prüfstand C) DR, Kirchmöser, 1976

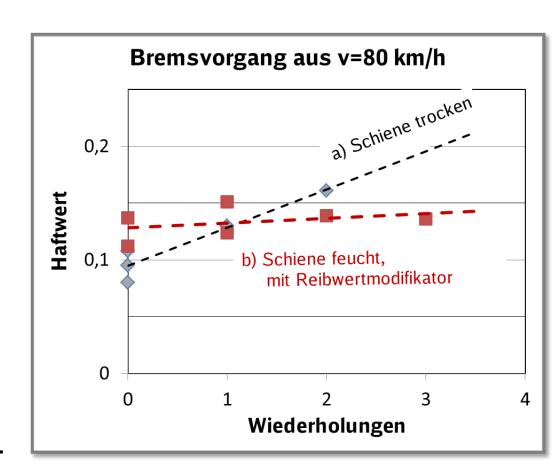

Der Rad/Schiene-Systemprüfstand – Untersuchungen mit Rollkontakt

- Erprobung von Radwerkstoffen
- Bremsen bei wechselnden Haftwerten
- Rollgeräusch und Radschalldämpfer
- Diagnosesysteme

- Hohe Geschwindigkeit
- Schienenringe aus R260
- programmierbar mit Schräglauf, Schmierung, Befeuchtung

Anwendung

"Kraftschluss beim Bremsen"


Aufgabe:

Haftwertbestimmung für Reibwertmodifikatoren

- 1. Schienenrollen wurden konditioniert:
 - trocken/feucht
 - mit/ohne Reibwertmodifikator.
- 2. Radsatz wurde aus 80 km/h abgebremst.
- Bremskräfte und Haftwert wurden wiederholt gemessen.

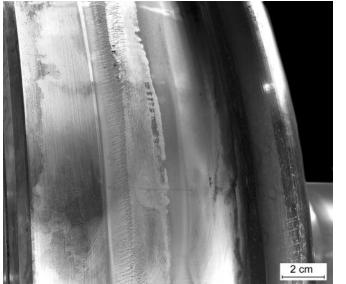
Ergebnis:

- Vorauswahl geeigneterSchmiermittel für Nahverkehrsfahrzeuge
- Nachweis ausreichender Mindest-Haftwerte.

Anwendung

"Vorauswahl von Radwerkstoffen"

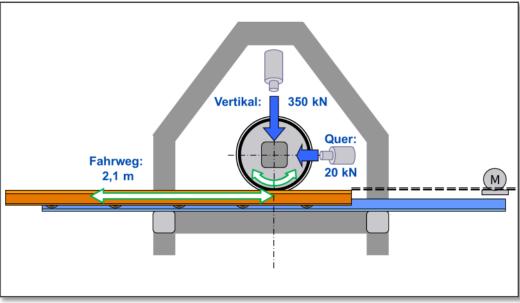
Aufgabe:


Auswahl eines Radwerkstoffs für VT-Fahrzeuge auf Strecken mit hohem Bogenanteil

- 1. Räder mit unterschiedlicher Festigkeit absolvierten je 8.000 km Testfahrt. (Dauer: 3-4 Tage).
- 2. Räder aus ER7 dienten als Referenz.
- Das Fahrregime umfasste Bogenfahrten, Bremsen und Befeuchtung.
- Unrundheit und Ausbröckelungen wurden anschließend beurteilt.

Ergebnis des Prüfstandsversuchs:

- Günstigste Ergebnisse mit ER8, d.h. leicht höherer Festigkeit gegenüber ER7.
- Der Betriebsversuch bestätigte die Ergebnisse.



Der Rad/Schiene-Prüfstand mit Lineareinheit – für Rollkontaktermüdung und Verschleiß

■ ... seit 2011 durch Umbau nutzbar für

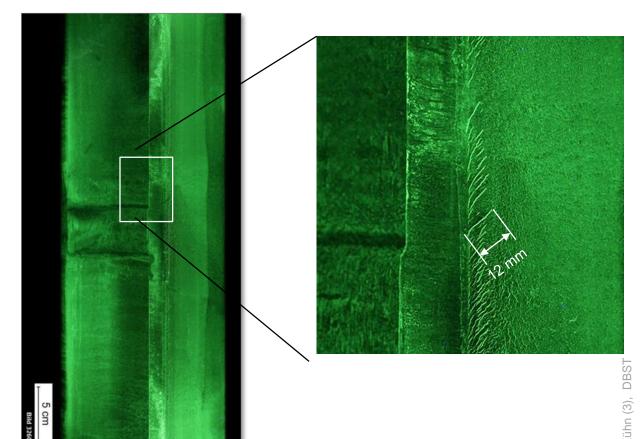
- Schienen, Schweißverbindungen
- Weichenherzstücke
- Zungenkonstruktionen

- Beliebige Profil- und Werkstoffpaarungen
- bis 1 Mio. Lasttonnen täglich
- Prüfkräfte und Positionen programmierbar, auch Schräglauf, Schmierung, Befeuchtung

Anwendungsbeispiel -Schienenverschleiß in der Umgebung von Schweißstößen

Aufgabe: Bewertung von Schweißungen an kopfgehärteten Schienen

■ Verschleiß und RCF-Schäden sind nach 1,2 Mio. Lasttonnen (ca. 1 Woche) nachweisbar

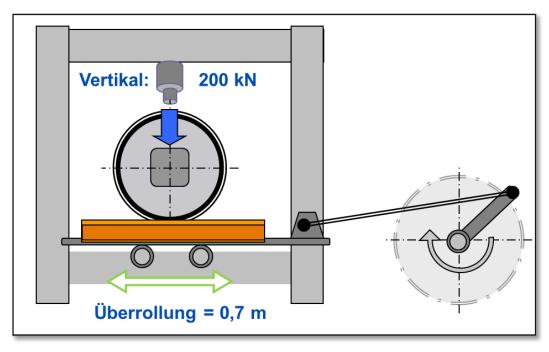

Schiene R350HT

Wärmeeinflusszone

Schweißgut

Wärmeeinflusszone

Schiene R350HT



Der Linearprüfstand

Mobility Networks Logistics

für Untersuchungen an Schienen- und Weichensegmenten

Anwendungen:

- Weichenherzstücke, verkleinert 1:2
- Schweißverbindungen, Isolierstöße
- Schienen

- Beliebige Profil- und Werkstoffpaarungen
- bis 5 Mio. Lasttonnen täglich
- Einfache, konstante Krafteinleitung

Anwendungsbeispiel

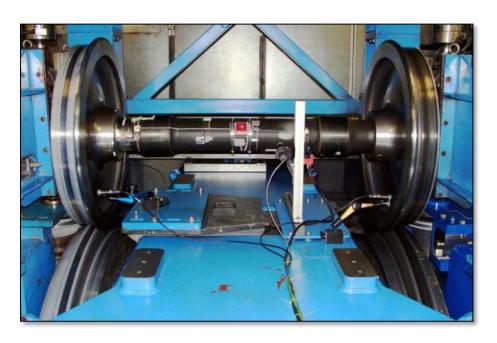
"Isolierstöße"

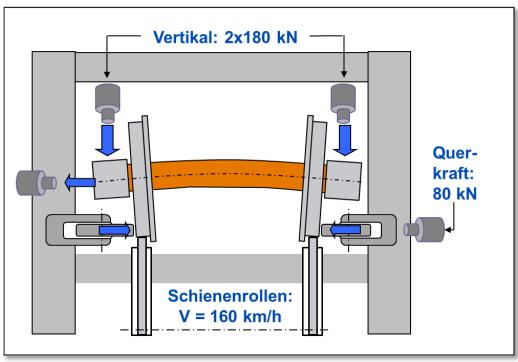
Mobility Networks Logistics

Bewertung verschiedener Bauarten

- Jede Variante wird mit 10 Mio Lasttonnen überrollt.
- Die Ausfahrungen werden vermessen und bewertet.
- Versuchsdauer: ca. 2,5 Tage.

 Vergleichbarer Streckenversuch: ab 6 Monate





Fotos: Wilke (2) DBST

Mobility Networks Logistics

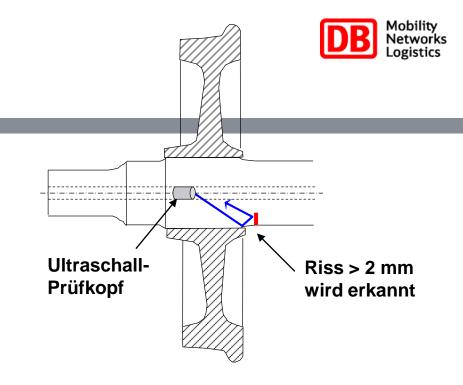
Der Rollprüfstand für Radsätze Überroll- und Rissfortschrittsversuche

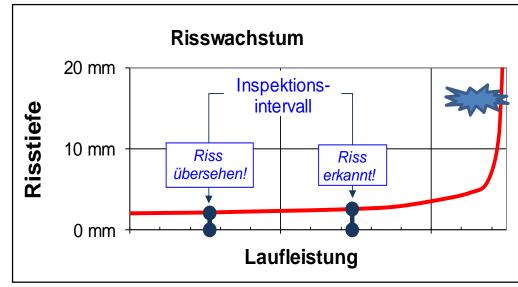
Anwendungen:

- Spurwechselradsätze
- Rissfortschritt in Radsatzwellen.
- Diverse Radkonstruktionen
 z.B. Straßenbahnräder

- Mittlere Geschwindigkeiten bis 160 km/h
- Prüfkräfte programmierbar
- Hohe Lasten und Biegespannungen
- glatte, zylindrische Profile

Beispiel


"Rissfortschritt in Radsatzwellen"


Inspektionsverfahren für Radsatzwellen mit Längsbohrung:

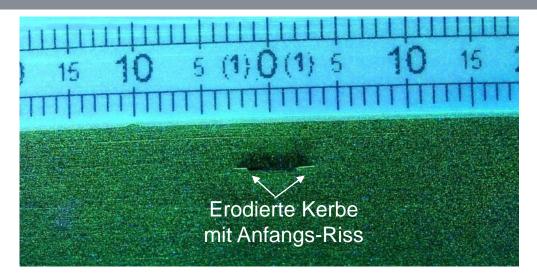
- Risse ab 2 mm Tiefe werden durch Ultraschallprüfung erkannt.
- Ein "kleiner" Anriss von 2 mm kann u.U. einmalig übersehen werden.
- Die Inspektionsintervalle stellen sicher, dass der "kleine" Riss bis zur nächsten Inspektion nicht kritisch wird.

Methode:

Die Restlebensdauer geschädigter Wellen wird rechnerisch und experimentell bestimmt.

Beispiel

Mobility Networks Logistics


"Rissfortschritt in Radsatzwellen"

Experimentelle Ermittlung der Restlebensdauer geschädigter Wellen

- Erzeugen eines "kleinen" Anfangs-Risses,
- 2. Durchfahren eines aus Messfahrten ermittelten, klassierten Lastkollektivs
- 3. Kontinuierliche Erfassung der Risslänge
- Versuchsabbruch bei stark progressivem Risswachstum.

Ergebnisse:

- Restlebensdauerbestimmung experimentell auch für höher beanspruchte Wellen und höherfeste Werkstoffe möglich.
- Die experimentell ermittelten Restlebensdauern sind i.A. größer als die berechneten.

Beispiel

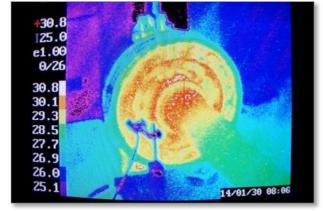
"Elastomer-gefederte Radkonstruktionen"

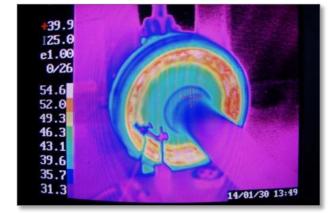
Belastungstest für Straßenbahn-Räder:

- 10 Mio. Lastwechsel im Dauerbetrieb, wechselnde Krafteinleitung
- Überwachung der Radtemperatur und -verdrehung

Ergebnis:

- Verifikation der Konstruktion
- Keine Gefährdungen




A) 80 km/h 50 kN Vertikalkraft

B) wie A) zusätzlich 30 kN Querkraft

Zusammenfassung

An 1:1-Rad/Schiene-Prüfständen lassen sich Räder, Schienen und andere Bahnkomponenten kosten- und zeitsparend erproben:

- Die Versuchsbedingungen sind i.d.R. gut reproduzierbar.
- Verschleiß- und Schädigungseffekte werden deutlich schneller sichtbar als im Betriebsversuch.
- Bei geeigneter Versuchsplanung treten die Produkteigenschaften und –unterschiede besser und klarer als im Gleis hervor.
- Der Prüfstandsversuch erlaubt eine Vorauswahl von Erfolg versprechenden Produkten und Verfahren.
- Nachfolgende Betriebserprobung ist meist nicht zu ersetzen.
 Ihr Umfang wird aber durch Prüfstandsversuche signifikant reduziert.