"Series EV-E301" Rolling Stock Catenary and Battery-Powered Hybrid Railcar

10 September 2014

Rolling Stock Technology Center, Transport and Rolling Stock DEPT,

East Japan Railway Company

Hiroshi TAKIGUCHI

Agenda

- 1 Background
- 2 Catenary and Battery-Powered Hybrid Railcar System
- 3 Unique Mechanism of Series EV-E301
- 4 Main Specifications
- 5 Design Concept
- 6 Outline of Series EV-E301
- 7 Future Effort

Background

1-1 Purpose of Development

- In non-electrified section,
- The improvement of energy efficiency
 - -Effective use of regenerative power
- Reducing the environmental impact
 - -Reducing CO₂ emissions
 - -Eliminating exhaust gases and noise from diesel engine
- Reduction in maintenance of the cars by reducing laborious mechanical parts (such as engines and transmissions)
- The improvement of rolling stock operation efficiency
 - The cars can run on both electrified and non-electrified sections.
- The improvement of acceleration and deceleration performance of cars

1-2 Hybrid Railcars of JR EAST

■Diesel Hybrid Railcar

Series HB-E300

- •Commercial operation : 2010
- Line: Gono Line, Tsugaru Line, Ominato Line etc.

Kiha E200 Type

- •Commercial operation : 2007
- •Line: Koumi Line

1-3 Development of Catenary and Battery-Powered Hybrid Railcar

1-4 Operation Area of Series EV-E301

- Electrified section(Tohoku Line) between Utsunomiya and Hoshakuji Distance: 11.7km
- Non-electrified section(Karasuyama Line) between Hoshakuji and Karasuyama Distance: 22.4km

Catenary and Battery-Powered Hybrid Railcar System

2

Overall Composition of Catenary and Battery-powered Hybrid Railcar System 🛕 🗛

Overview of rolling stock system

- 1 Charges battery from catenary via pantograph
- 2 Drives motor by either catenary or battery
- 3 Charges battery with regenerative energy (Regeneration to catenary possible in electrified sections.)

Overview of charging facilities system

- Power received from power company distribution line instead of dedicated power lines
- ② Stepping down and rectification at voltage converter and power feeding to car from overhead conductor rail

EASTJAPAN RAILWAY COMPANY

Unique Mechanism of Series EV-E301

3-1 Main Circuit System Composition

Overall composition of main circuit system

3-2 Setting Battery Capacity

Equipment for Identifying Type of Overhead Lines

Series EV-E301 has equipment to automatically identify overhead line type.

- case1 Catenary Electrified section
 case2 Without Overhead Line Non-electrified section
 case2 Overhead Conductor Rail Turn-back Station(Charging Facility)
 - Pantograph Control
 - Powering and Braking Control
 - Limit of value of collected current through pantograph

3-3

Equipment for Identifying Type of Overhead Lines

Example of the car control

Electrified section

3-3

- Raising pantograph ⇒possible
- •Powering
- ⇒possible
- •Value of collected current
 - ⇒normal current

•Apply the emergency brake

- Raising pantograph
 - ⇒possible
- Powering
 - ⇒impossible
- Value of collected current
 - ⇒large current

3-4 Method of Mounting Batteries

1 module(0.864Wh)

1 module(0.864Wh)

 \times 22 module

1 box

3-5

Passenger Cabin Energy Monitor Display

Passenger cabin of Series EV-E301 has a monitor display showing energy flow between the equipment.

Example of the display

Electrified section

pantograph raised powering

Non-electrified section
•pantograph lowered •powering

16

Main specifications

4-1 Main specifications

$EV = \mathbf{E}$	nergy	storage	V	ehicl	e
		Storage			\sim

ւ∨= <u>⊾</u> n	ergy storage <u>v</u> enicie			
		وللي المال وللي المال	(4) IIII - III - (4) II	
Car type		EV-E301	EV-E300	
Classification code		Mc	Mc'	
Passenger capacity(number of seats)		133(48)	133(48)	
Weight (t)		40.2	37.7	
Car body length × Width × Height(mm)		19,570 × 2,800 × 3,620		
Bogie center distance (mm)		13,800		
	Gauge (mm)	1,067		
ı	Туре	Bolsterless		
	Wheel base (mm)	2,100		
	Wheel diameter (mm)	φ860		
	Drive system	Parallel cardan system		
Electric system		1,500V DC / 630V DC		
Train performance		Maximum running speed 100km/hStarting acceleration		
		0.556m/s ² (2.0km/h/s)		
Control system		VVVF inverter control		
Main circuit battery		Lithium-ion battery 95kWh	Lithium-ion battery 95kWh	
Brake system		Electric command air brakes with regenerative braking		
		(with load compensating control)		
Traction motor		3-phase squirrel-cage induction motor		
		Continuous rated output: 95kW		
Auxiliary power supply		Static inverter; Auxiliary rectifier		
Safety devices		ATS-P		

4-2 Nickname of Series EV-E301

- Why was the car nicknamed 'ACCUM'?
 - The nickname was chosen by the public.

ACCUM = **Accumulator**

■Symbol mark

Imaging the flow of energy between 'Overhead line', 'Battery' and 'Main motor'

Design concept

5-1 Exterior Design

Total Concept: "Spirit of Innovation" "Environmentally Friendliness"

5-2 Interior Design

LED lighting

Total Concept: "Spirit of Innovation" "Environmentally Friendliness"

Spirit of innovation Indirect LED lighting arranged continuously / New ceiling shape

People-friendliness Sufficient space for wheelchair user / Color combination for separating information area

■Features of the Karasuyama Line

"Green" of seat: The landscape of the four seasons along the line

Outline of Series EV-E301

6-1 Car Body

Light-Weight Stainless Steel Construction

- Straight body
- The reinforced head structure
- Weight reduction structure (Replacing stainless steel parts with aluminium alloy)

6-2 Passenger Cabin

6-2 Passenger Cabin

■LED Room Light

■LCD-type information display

■ Wheelchair Space

6-3 Crew Cabin

6-3 Crew Cabin

6-4 Equipment Layout on Roof

6-5 Equipment Layout under Floor AAC

6-5 Equipment Layout under Floor AACC

Car 2

Future Effort

7-1 Assumed Effect

■ Effect of reducing CO₂ emissions

Effect of reducing noise

(When the car stopped at the station.)

7-2 Future Effort

- Acquiring data about the battery in the summer and winter season (temperature, SOC, etc.)
- Replacing all diesel cars running Karasuyama Line with Series EV-E301

Quick charge at Karasuyama station

Running in the non-electrified section

